Overall, the default options are the best. However, sometimes one of these is dramatically better (or worse!). For the examples here, one doesn't notice much difference.
RadicalCodim1 chooses an alternate, often much faster, sometimes much slower, algorithm for computing the radical of ideals. This will often produce a different presentation for the integral closure. Radical chooses yet another such algorithm.
AllCodimensions tells the algorithm to bypass the computation of the S2-ification, but in each iteration of the algorithm, use the radical of the extended Jacobian ideal from the previous step, instead of using only the codimension 1 components of that. This is useful when for some reason the S2-ification is hard to compute, or if the probabilistic algorithm for computing it fails. In general though, this option slows down the computation for many examples.
StartWithOneMinor tells the algorithm to not compute the entire Jacobian ideal, just find one element in it. This is often a bad choice, unless the ideal is large enough that one can't compute the Jacobian ideal. In the future, we plan on using the FastMinors package to compute part of the Jacobian ideal.
SimplifyFractions changes the fractions to hopefully be simpler. Sometimes it succeeds, yet sometimes it makes the fractions worse. This is because of the manner in which fraction fields work. We are hoping that in the future, less drastic change of fractions will happen by default.
Vasconocelos tells the routine to instead of computing Hom(J,J), to instead compute Hom(J^-1, J^-1). This is usually a more time consuming computation, but it does potentially get to the answer in a smaller number of steps.
i1 : S = QQ[x,y,z]
o1 = S
o1 : PolynomialRing
|
i2 : f = ideal (x^8-z^6-y^2*z^4-z^3)
8 2 4 6 3
o2 = ideal(x - y z - z - z )
o2 : Ideal of S
|
i3 : R = S/f
o3 = R
o3 : QuotientRing
|
i4 : time R' = integralClosure R
-- used 0.917226 seconds
o4 = R'
o4 : QuotientRing
|
i5 : netList (ideal R')_*
+------------------------------------------------------------------------+
| 3 |
o5 = |w z - x |
| 4,0 |
+------------------------------------------------------------------------+
| 2 2 4 |
|w x - y z - z - z |
| 1,1 |
+------------------------------------------------------------------------+
| 4 |
|w x - w z |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 2 2 3 2 |
|w w - x y z - x z - x |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 3 2 2 6 2 |
|w z + w x y z - w + x z |
| 4,0 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 4 2 2 |
|w x + w x y - w y z - w |
| 4,0 4,0 1,1 1,1 |
+------------------------------------------------------------------------+
| 3 2 3 2 6 4 2 2 4 6 2 3 |
|w + w x y + w x z - x*y z - 2x*y z - x*z - 2x*y z - 2x*z - x|
| 4,0 4,0 4,0 |
+------------------------------------------------------------------------+
|
i6 : icFractions R
3 2 2 4
x y z + z + z
o6 = {--, -------------, x, y, z}
z x
o6 : List
|
i7 : S = QQ[x,y,z]
o7 = S
o7 : PolynomialRing
|
i8 : f = ideal (x^8-z^6-y^2*z^4-z^3)
8 2 4 6 3
o8 = ideal(x - y z - z - z )
o8 : Ideal of S
|
i9 : R = S/f
o9 = R
o9 : QuotientRing
|
i10 : time R' = integralClosure(R, Strategy => Radical)
-- used 0.885495 seconds
o10 = R'
o10 : QuotientRing
|
i11 : netList (ideal R')_*
+------------------------------------------------------------------------+
| 3 |
o11 = |w z - x |
| 4,0 |
+------------------------------------------------------------------------+
| 2 2 4 |
|w x - y z - z - z |
| 1,1 |
+------------------------------------------------------------------------+
| 4 |
|w x - w z |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 2 2 3 2 |
|w w - x y z - x z - x |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 3 2 2 6 2 |
|w z + w x y z - w + x z |
| 4,0 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 4 2 2 |
|w x + w x y - w y z - w |
| 4,0 4,0 1,1 1,1 |
+------------------------------------------------------------------------+
| 3 2 3 2 6 4 2 2 4 6 2 3 |
|w + w x y + w x z - x*y z - 2x*y z - x*z - 2x*y z - 2x*z - x|
| 4,0 4,0 4,0 |
+------------------------------------------------------------------------+
|
i12 : icFractions R
3 2 2 4
x y z + z + z
o12 = {--, -------------, x, y, z}
z x
o12 : List
|
i13 : S = QQ[x,y,z]
o13 = S
o13 : PolynomialRing
|
i14 : f = ideal (x^8-z^6-y^2*z^4-z^3)
8 2 4 6 3
o14 = ideal(x - y z - z - z )
o14 : Ideal of S
|
i15 : R = S/f
o15 = R
o15 : QuotientRing
|
i16 : time R' = integralClosure(R, Strategy => AllCodimensions)
-- used 0.91533 seconds
o16 = R'
o16 : QuotientRing
|
i17 : netList (ideal R')_*
+------------------------------------------------------------------------+
| 3 |
o17 = |w z - x |
| 4,0 |
+------------------------------------------------------------------------+
| 2 2 4 |
|w x - y z - z - z |
| 1,1 |
+------------------------------------------------------------------------+
| 4 |
|w x - w z |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 2 2 3 2 |
|w w - x y z - x z - x |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 3 2 2 6 2 |
|w z + w x y z - w + x z |
| 4,0 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 4 2 2 |
|w x + w x y - w y z - w |
| 4,0 4,0 1,1 1,1 |
+------------------------------------------------------------------------+
| 3 2 3 2 6 4 2 2 4 6 2 3 |
|w + w x y + w x z - x*y z - 2x*y z - x*z - 2x*y z - 2x*z - x|
| 4,0 4,0 4,0 |
+------------------------------------------------------------------------+
|
i18 : S = QQ[x,y,z]
o18 = S
o18 : PolynomialRing
|
i19 : f = ideal (x^8-z^6-y^2*z^4-z^3)
8 2 4 6 3
o19 = ideal(x - y z - z - z )
o19 : Ideal of S
|
i20 : R = S/f
o20 = R
o20 : QuotientRing
|
i21 : time R' = integralClosure(R, Strategy => SimplifyFractions)
-- used 1.0215 seconds
o21 = R'
o21 : QuotientRing
|
i22 : netList (ideal R')_*
+------------------------------------------------------------------------+
| 3 |
o22 = |w z - x |
| 4,0 |
+------------------------------------------------------------------------+
| 2 2 4 |
|w x - y z - z - z |
| 1,0 |
+------------------------------------------------------------------------+
| 2 2 2 3 2 |
|w w - x y z - x z - x |
| 4,0 1,0 |
+------------------------------------------------------------------------+
| 4 |
|w x - w z |
| 4,0 1,0 |
+------------------------------------------------------------------------+
| 2 3 2 2 6 2 |
|w z + w x y z - w + x z |
| 4,0 4,0 1,0 |
+------------------------------------------------------------------------+
| 2 4 2 2 |
|w x + w x y - w y z - w |
| 4,0 4,0 1,0 1,0 |
+------------------------------------------------------------------------+
| 3 2 3 2 6 4 2 2 4 6 2 3 |
|w + w x y + w x z - x*y z - 2x*y z - x*z - 2x*y z - 2x*z - x|
| 4,0 4,0 4,0 |
+------------------------------------------------------------------------+
|
i23 : S = QQ[x,y,z]
o23 = S
o23 : PolynomialRing
|
i24 : f = ideal (x^8-z^6-y^2*z^4-z^3)
8 2 4 6 3
o24 = ideal(x - y z - z - z )
o24 : Ideal of S
|
i25 : R = S/f
o25 = R
o25 : QuotientRing
|
i26 : time R' = integralClosure (R, Strategy => RadicalCodim1)
-- used 1.23419 seconds
o26 = R'
o26 : QuotientRing
|
i27 : netList (ideal R')_*
+------------------------------------------------------------------------+
| 3 |
o27 = |w z - x |
| 4,0 |
+------------------------------------------------------------------------+
| 2 2 4 |
|w x - y z - z - z |
| 1,1 |
+------------------------------------------------------------------------+
| 4 |
|w x - w z |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 2 2 3 2 |
|w w - x y z - x z - x |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 3 2 2 6 2 |
|w z + w x y z - w + x z |
| 4,0 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 4 2 2 |
|w x + w x y - w y z - w |
| 4,0 4,0 1,1 1,1 |
+------------------------------------------------------------------------+
| 3 2 3 2 6 4 2 2 4 6 2 3 |
|w + w x y + w x z - x*y z - 2x*y z - x*z - 2x*y z - 2x*z - x|
| 4,0 4,0 4,0 |
+------------------------------------------------------------------------+
|
i28 : S = QQ[x,y,z]
o28 = S
o28 : PolynomialRing
|
i29 : f = ideal (x^8-z^6-y^2*z^4-z^3)
8 2 4 6 3
o29 = ideal(x - y z - z - z )
o29 : Ideal of S
|
i30 : R = S/f
o30 = R
o30 : QuotientRing
|
i31 : time R' = integralClosure (R, Strategy => Vasconcelos)
-- used 0.875343 seconds
o31 = R'
o31 : QuotientRing
|
i32 : netList (ideal R')_*
+------------------------------------------------------------------------+
| 3 |
o32 = |w z - x |
| 4,0 |
+------------------------------------------------------------------------+
| 2 2 4 |
|w x - y z - z - z |
| 1,1 |
+------------------------------------------------------------------------+
| 4 |
|w x - w z |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 2 2 3 2 |
|w w - x y z - x z - x |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 3 2 2 6 2 |
|w z + w x y z - w + x z |
| 4,0 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 4 2 2 |
|w x + w x y - w y z - w |
| 4,0 4,0 1,1 1,1 |
+------------------------------------------------------------------------+
| 3 2 3 2 6 4 2 2 4 6 2 3 |
|w + w x y + w x z - x*y z - 2x*y z - x*z - 2x*y z - 2x*z - x|
| 4,0 4,0 4,0 |
+------------------------------------------------------------------------+
|
i33 : S = QQ[a,b,c,d]
o33 = S
o33 : PolynomialRing
|
i34 : f = monomialCurveIdeal(S,{1,3,4})
3 2 2 2 3 2
o34 = ideal (b*c - a*d, c - b*d , a*c - b d, b - a c)
o34 : Ideal of S
|
i35 : R = S/f
o35 = R
o35 : QuotientRing
|
i36 : time R' = integralClosure R
-- used 0.0927918 seconds
o36 = R'
o36 : QuotientRing
|
i37 : netList (ideal R')_*
+-----------+
o37 = |b*c - a*d |
+-----------+
| 2 |
|w d - c |
| 0,0 |
+-----------+
|w c - b*d|
| 0,0 |
+-----------+
|w b - a*c|
| 0,0 |
+-----------+
| 2 |
|w a - b |
| 0,0 |
+-----------+
| 2 |
|w - a*d |
| 0,0 |
+-----------+
|
i38 : S = QQ[a,b,c,d]
o38 = S
o38 : PolynomialRing
|
i39 : I = monomialCurveIdeal(S,{1,3,4})
3 2 2 2 3 2
o39 = ideal (b*c - a*d, c - b*d , a*c - b d, b - a c)
o39 : Ideal of S
|
i40 : R = S/I
o40 = R
o40 : QuotientRing
|
i41 : time R' = integralClosure(R, Strategy => Radical)
-- used 0.152305 seconds
o41 = R'
o41 : QuotientRing
|
i42 : icFractions R
2
c
o42 = {--, a, b, c, d}
d
o42 : List
|
i43 : S = QQ[a,b,c,d]
o43 = S
o43 : PolynomialRing
|
i44 : I = monomialCurveIdeal(S,{1,3,4})
3 2 2 2 3 2
o44 = ideal (b*c - a*d, c - b*d , a*c - b d, b - a c)
o44 : Ideal of S
|
i45 : R = S/I
o45 = R
o45 : QuotientRing
|
i46 : time R' = integralClosure(R, Strategy => AllCodimensions)
-- used 0.121151 seconds
o46 = R'
o46 : QuotientRing
|
i47 : icFractions R
b*d
o47 = {---, a, b, c, d}
c
o47 : List
|
i48 : S = QQ[a,b,c,d]
o48 = S
o48 : PolynomialRing
|
i49 : I = monomialCurveIdeal(S,{1,3,4})
3 2 2 2 3 2
o49 = ideal (b*c - a*d, c - b*d , a*c - b d, b - a c)
o49 : Ideal of S
|
i50 : R = S/I
o50 = R
o50 : QuotientRing
|
i51 : time R' = integralClosure (R, Strategy => RadicalCodim1)
-- used 0.147976 seconds
o51 = R'
o51 : QuotientRing
|
i52 : icFractions R
2
c
o52 = {--, a, b, c, d}
d
o52 : List
|
i53 : S = QQ[a,b,c,d]
o53 = S
o53 : PolynomialRing
|
i54 : I = monomialCurveIdeal(S,{1,3,4})
3 2 2 2 3 2
o54 = ideal (b*c - a*d, c - b*d , a*c - b d, b - a c)
o54 : Ideal of S
|
i55 : R = S/I
o55 = R
o55 : QuotientRing
|
i56 : time R' = integralClosure (R, Strategy => Vasconcelos)
-- used 0.0895594 seconds
o56 = R'
o56 : QuotientRing
|
i57 : icFractions R
2
c
o57 = {--, a, b, c, d}
d
o57 : List
|
i58 : S' = QQ[symbol a .. symbol f]
o58 = S'
o58 : PolynomialRing
|
i59 : M' = genericSymmetricMatrix(S',a,3)
o59 = | a b c |
| b d e |
| c e f |
3 3
o59 : Matrix S' <--- S'
|
i60 : I' = minors(2,M')
2 2
o60 = ideal (- b + a*d, - b*c + a*e, - c*d + b*e, - b*c + a*e, - c + a*f, -
-----------------------------------------------------------------------
2
c*e + b*f, - c*d + b*e, - c*e + b*f, - e + d*f)
o60 : Ideal of S'
|
i61 : center = ideal(b,c,e,a-d,d-f)
o61 = ideal (b, c, e, a - d, d - f)
o61 : Ideal of S'
|
i62 : S = QQ[a,b,c,d,e]
o62 = S
o62 : PolynomialRing
|
i63 : p = map(S'/I',S,gens center)
S'
o63 = map (------------------------------------------------------------------------------------------------------------------, S, {b, c, e, a - d, d - f})
2 2 2
(- b + a*d, - b*c + a*e, - c*d + b*e, - b*c + a*e, - c + a*f, - c*e + b*f, - c*d + b*e, - c*e + b*f, - e + d*f)
S'
o63 : RingMap ------------------------------------------------------------------------------------------------------------------ <--- S
2 2 2
(- b + a*d, - b*c + a*e, - c*d + b*e, - b*c + a*e, - c + a*f, - c*e + b*f, - c*d + b*e, - c*e + b*f, - e + d*f)
|
i64 : I = kernel p
2 2 2 2 2 2 2 3 2
o64 = ideal (a d - b d - b e + c e - d e - d*e , b c - c - a*b*d + c*d +
-----------------------------------------------------------------------
2 3 2 3 2
c*d*e, a c - c - a*b*d + c*d - a*b*e + c*d*e, b - b*c - a*c*d +
-----------------------------------------------------------------------
2 2 2 2 3 2
b*d*e, a*b - a*c - b*c*d, a b - b*c - a*c*d - a*c*e, a - a*c -
-----------------------------------------------------------------------
2
b*c*d - b*c*e - a*d*e - a*e )
o64 : Ideal of S
|
i65 : betti res I
0 1 2 3 4
o65 = total: 1 7 10 5 1
0: 1 . . . .
1: . . . . .
2: . 7 10 5 1
o65 : BettiTally
|
i66 : R = S/I
o66 = R
o66 : QuotientRing
|
i67 : time R' = integralClosure(R, Strategy => Radical)
-- used 0.201277 seconds
o67 = R'
o67 : QuotientRing
|
i68 : icFractions R
2 2
b - c
o68 = {-------, a, b, c, d, e}
d
o68 : List
|
i69 : S' = QQ[a..f]
o69 = S'
o69 : PolynomialRing
|
i70 : M' = genericSymmetricMatrix(S',a,3)
o70 = | a b c |
| b d e |
| c e f |
3 3
o70 : Matrix S' <--- S'
|
i71 : I' = minors(2,M')
2 2
o71 = ideal (- b + a*d, - b*c + a*e, - c*d + b*e, - b*c + a*e, - c + a*f, -
-----------------------------------------------------------------------
2
c*e + b*f, - c*d + b*e, - c*e + b*f, - e + d*f)
o71 : Ideal of S'
|
i72 : center = ideal(b,e,a-d,d-f)
o72 = ideal (b, e, a - d, d - f)
o72 : Ideal of S'
|
i73 : S = QQ[a,b,d,e]
o73 = S
o73 : PolynomialRing
|
i74 : p = map(S'/I',S,gens center)
S'
o74 = map (------------------------------------------------------------------------------------------------------------------, S, {b, e, a - d, d - f})
2 2 2
(- b + a*d, - b*c + a*e, - c*d + b*e, - b*c + a*e, - c + a*f, - c*e + b*f, - c*d + b*e, - c*e + b*f, - e + d*f)
S'
o74 : RingMap ------------------------------------------------------------------------------------------------------------------ <--- S
2 2 2
(- b + a*d, - b*c + a*e, - c*d + b*e, - b*c + a*e, - c + a*f, - c*e + b*f, - c*d + b*e, - c*e + b*f, - e + d*f)
|
i75 : I = kernel p
4 2 2 4 2 2 2 2 2 2
o75 = ideal(a - 2a b + b - b d - a d*e - b d*e - a e )
o75 : Ideal of S
|
i76 : betti res I
0 1
o76 = total: 1 1
0: 1 .
1: . .
2: . .
3: . 1
o76 : BettiTally
|
i77 : R = S/I
o77 = R
o77 : QuotientRing
|
i78 : time R' = integralClosure(R, Strategy => Radical)
-- used 0.592118 seconds
o78 = R'
o78 : QuotientRing
|
i79 : icFractions R
2 2 2 3 2
a - b a b - b + b*d + b*d*e
o79 = {-------, -----------------------, a, b, d, e}
d + e a*d + a*e
o79 : List
|
i80 : S = QQ[a,b,d,e]
o80 = S
o80 : PolynomialRing
|
i81 : R = S/sub(I,S)
o81 = R
o81 : QuotientRing
|
i82 : time R' = integralClosure(R, Strategy => AllCodimensions)
-- used 0.713237 seconds
o82 = R'
o82 : QuotientRing
|
i83 : icFractions R
2 2 2 3 2
a - b a b - b + b*d + b*d*e
o83 = {-------, -----------------------, a, b, d, e}
d + e a*d + a*e
o83 : List
|
i84 : S = QQ[a,b,d,e]
o84 = S
o84 : PolynomialRing
|
i85 : R = S/sub(I,S)
o85 = R
o85 : QuotientRing
|
i86 : time R' = integralClosure (R, Strategy => RadicalCodim1, Verbosity => 1)
[jacobian time .000978469 sec #minors 4]
integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
[step 0: time .235601 sec #fractions 6]
[step 1: time .259379 sec #fractions 6]
-- used 0.500857 seconds
o86 = R'
o86 : QuotientRing
|
i87 : icFractions R
2 2 2 3 2
a - b a b - b + b*d + b*d*e
o87 = {-------, -----------------------, a, b, d, e}
d + e a*d + a*e
o87 : List
|
i88 : S = QQ[a,b,d,e]
o88 = S
o88 : PolynomialRing
|
i89 : R = S/sub(I,S)
o89 = R
o89 : QuotientRing
|
i90 : time R' = integralClosure (R, Strategy => Vasconcelos, Verbosity => 1)
[jacobian time .00089322 sec #minors 4]
integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
[step 0: time .232913 sec #fractions 6]
[step 1: time .319663 sec #fractions 6]
-- used 0.560515 seconds
o90 = R'
o90 : QuotientRing
|
i91 : icFractions R
2 2 2 3 2
a - b a b - b + b*d + b*d*e
o91 = {-------, -----------------------, a, b, d, e}
d + e a*d + a*e
o91 : List
|
i92 : S = QQ[a,b,d,e]
o92 = S
o92 : PolynomialRing
|
i93 : R = S/sub(I,S)
o93 = R
o93 : QuotientRing
|
i94 : time R' = integralClosure (R, Strategy => {Vasconcelos, StartWithOneMinor}, Verbosity => 1)
[jacobian time .00124365 sec #minors 1]
integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
[step 0: time .362022 sec #fractions 6]
[step 1: time .804462 sec #fractions 6]
-- used 1.17512 seconds
o94 = R'
o94 : QuotientRing
|
i95 : icFractions R
2 2 2 2 3 2
2a - 2b - d*e - e a b - b + b*d + b*d*e
o95 = {--------------------, -----------------------, a, b, d, e}
d + e a*d + a*e
o95 : List
|
i96 : ideal R'
2 2 2
o96 = ideal (w d + w e - 2a + 2b + d*e + e , w b - 2w a + 2b*d +
0,0 0,0 0,0 0,1
-----------------------------------------------------------------------
2 2 2
b*e, w a - 2w b - a*e, 2w + w e - 2a + 2d*e + e , w w +
0,0 0,1 0,1 0,0 0,0 0,1
-----------------------------------------------------------------------
2 2 2
w e - 2a*b, w - 4b - e )
0,1 0,0
o96 : Ideal of QQ[w ..w , a..b, d..e]
0,0 0,1
|