Given an ideal I and an integer n, returns the larger of the two numbers (α(I))/(waldschmidt(I)) and the maximum of the quotients m/k that fail I(m) ⊆Ik with k ≤ SampleSize.
i1 : R = QQ[x,y,z]; |
i2 : J = ideal (x*(y^3-z^3),y*(z^3-x^3),z*(x^3-y^3)); o2 : Ideal of R |
i3 : lowerBoundResurgence(J, SampleSize=>5) 3 o3 = - 2 o3 : QQ |