SLnEquivariantMatrices : Index
- sl2EquivariantConstantRankMatrix -- computes a SL(2)-equivariant constant rank matrix
- sl2EquivariantConstantRankMatrix(..., CoefficientRing => ...) -- name for optional argument
- sl2EquivariantConstantRankMatrix(PolynomialRing,ZZ) -- computes a SL(2)-equivariant constant rank matrix
- sl2EquivariantConstantRankMatrix(ZZ,ZZ) -- computes a SL(2)-equivariant constant rank matrix
- sl2EquivariantVectorBundle -- computes a SL(2)-equivariant vector bundle over some projective space
- sl2EquivariantVectorBundle(..., CoefficientRing => ...) -- name for optional argument
- sl2EquivariantVectorBundle(PolynomialRing,ZZ) -- computes a SL(2)-equivariant vector bundle over some projective space
- sl2EquivariantVectorBundle(ZZ,ZZ) -- computes a SL(2)-equivariant vector bundle over some projective space
- slEquivariantConstantRankMatrix -- computes a SL-equivariant constant rank matrix
- slEquivariantConstantRankMatrix(..., CoefficientRing => ...) -- name for optional argument
- slEquivariantConstantRankMatrix(PolynomialRing,ZZ,ZZ) -- computes a SL-equivariant constant rank matrix
- slEquivariantConstantRankMatrix(PolynomialRing,ZZ,ZZ,PolynomialRing) -- computes a SL-equivariant constant rank matrix
- slEquivariantConstantRankMatrix(ZZ,ZZ,ZZ) -- computes a SL-equivariant constant rank matrix
- slEquivariantConstantRankMatrix(ZZ,ZZ,ZZ,PolynomialRing) -- computes a SL-equivariant constant rank matrix
- slEquivariantVectorBundle -- computes a SL-equivariant vector bundle over some projective space
- slEquivariantVectorBundle(..., CoefficientRing => ...) -- name for optional argument
- slEquivariantVectorBundle(PolynomialRing,ZZ,ZZ) -- computes a SL-equivariant vector bundle over some projective space
- slEquivariantVectorBundle(PolynomialRing,ZZ,ZZ,PolynomialRing) -- computes a SL-equivariant vector bundle over some projective space
- slEquivariantVectorBundle(ZZ,ZZ,ZZ) -- computes a SL-equivariant vector bundle over some projective space
- slEquivariantVectorBundle(ZZ,ZZ,ZZ,PolynomialRing) -- computes a SL-equivariant vector bundle over some projective space
- slIrreducibleRepresentationsTensorProduct -- computes the the irreducible SL-subrepresentations of the tensor product of two symmetric products
- slIrreducibleRepresentationsTensorProduct(PolynomialRing,ZZ,ZZ) -- computes the the irreducible SL-subrepresentations of the tensor product of two symmetric products
- slIrreducibleRepresentationsTensorProduct(ZZ,ZZ,ZZ) -- computes the the irreducible SL-subrepresentations of the tensor product of two symmetric products
- SLnEquivariantMatrices -- Ancillary file to the paper "A construction of equivariant bundles on the space of symmetric forms"