The list b should contain LieElement of the same degree. The output bb is a list of LieElement, which is a basis for the inverse image under f of the space generated by b.
i1 : L=lieAlgebra({x,y},genSigns=>1) o1 = L o1 : LieAlgebra |
i2 : M=lieAlgebra({a,b},genSigns=>1) o2 = M o2 : LieAlgebra |
i3 : f = mapLie(L,M,{x+y,x-y}) o3 = f o3 : MapLie |
i4 : d = derLie(f,{x x,x y}) o4 = d o4 : DerLie |
i5 : invImageBasisLie(f,{x y x}) o5 = {(1/2)(b a a) + (b b a)} o5 : List |
i6 : invImageBasisLie(d,{x y x}) o6 = {(a a), 2 (b a) + (b b)} o6 : List |