FrobeniusThresholds : Index
- Bounds -- an option for the function fpt specifying lower and upper bounds for the F-pure threshold
- compareFPT -- determine whether a number is less than, greater than, or equal to the F-pure threshold
- compareFPT(..., AssumeDomain => ...) -- determine whether a number is less than, greater than, or equal to the F-pure threshold
- compareFPT(..., AtOrigin => ...) -- determine whether a number is less than, greater than, or equal to the F-pure threshold
- compareFPT(..., FrobeniusRootStrategy => ...) -- determine whether a number is less than, greater than, or equal to the F-pure threshold
- compareFPT(..., MaxCartierIndex => ...) -- determine whether a number is less than, greater than, or equal to the F-pure threshold
- compareFPT(..., QGorensteinIndex => ...) -- determine whether a number is less than, greater than, or equal to the F-pure threshold
- compareFPT(..., Verbose => ...) -- determine whether a number is less than, greater than, or equal to the F-pure threshold
- compareFPT(Number,RingElement) -- determine whether a number is less than, greater than, or equal to the F-pure threshold
- ContainmentTest -- an option for the function nu specifying the type of containment of powers of ideals to test
- FinalAttempt -- an option for the function fpt to perform a final check attempting find an F-pure threshold
- fpt -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
- fpt(..., AtOrigin => ...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
- fpt(..., Attempts => ...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
- fpt(..., Bounds => ...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
- fpt(..., DepthOfSearch => ...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
- fpt(..., FinalAttempt => ...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
- fpt(..., GuessStrategy => ...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
- fpt(..., UseSpecialAlgorithms => ...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
- fpt(..., Verbose => ...) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
- fpt(List,List) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
- fpt(RingElement) -- attempt to compute the F-pure threshold of a polynomial at the origin or globally
- FrobeniusPower -- a valid value for the option ContainmentTest
- FrobeniusRoot -- a valid value for the option ContainmentTest
- FrobeniusThresholds -- a package for computing F-pure thresholds and related invariants
- GlobalFrobeniusRoot -- a valid value for the option ContainmentTest
- GuessStrategy -- an option for the function fpt to specify the criterion used for selecting numbers to check
- isFJumpingExponent -- whether a given number is an F-jumping exponent
- isFJumpingExponent(..., AssumeDomain => ...) -- whether a given number is an F-jumping exponent
- isFJumpingExponent(..., AtOrigin => ...) -- whether a given number is an F-jumping exponent
- isFJumpingExponent(..., FrobeniusRootStrategy => ...) -- whether a given number is an F-jumping exponent
- isFJumpingExponent(..., MaxCartierIndex => ...) -- whether a given number is an F-jumping exponent
- isFJumpingExponent(..., QGorensteinIndex => ...) -- whether a given number is an F-jumping exponent
- isFJumpingExponent(..., Verbose => ...) -- whether a given number is an F-jumping exponent
- isFJumpingExponent(Number,RingElement) -- whether a given number is an F-jumping exponent
- isFPT -- checks whether a given rational number is the F-pure threshold
- isFPT(..., AssumeDomain => ...) -- checks whether a given rational number is the F-pure threshold
- isFPT(..., AtOrigin => ...) -- checks whether a given rational number is the F-pure threshold
- isFPT(..., FrobeniusRootStrategy => ...) -- checks whether a given rational number is the F-pure threshold
- isFPT(..., MaxCartierIndex => ...) -- checks whether a given rational number is the F-pure threshold
- isFPT(..., QGorensteinIndex => ...) -- checks whether a given rational number is the F-pure threshold
- isFPT(..., Verbose => ...) -- checks whether a given rational number is the F-pure threshold
- isFPT(Number,RingElement) -- checks whether a given rational number is the F-pure threshold
- isSimpleNormalCrossing -- whether a polynomial is a product of factors that are in simple normal crossing
- isSimpleNormalCrossing(..., AtOrigin => ...) -- whether a polynomial is a product of factors that are in simple normal crossing
- isSimpleNormalCrossing(..., Verbose => ...) -- whether a polynomial is a product of factors that are in simple normal crossing
- isSimpleNormalCrossing(Product) -- whether a polynomial is a product of factors that are in simple normal crossing
- isSimpleNormalCrossing(RingElement) -- whether a polynomial is a product of factors that are in simple normal crossing
- nu -- computes the largest power of an ideal not contained in a specified Frobenius power
- nu(..., AtOrigin => ...) -- computes the largest power of an ideal not contained in a specified Frobenius power
- nu(..., ContainmentTest => ...) -- computes the largest power of an ideal not contained in a specified Frobenius power
- nu(..., ReturnList => ...) -- computes the largest power of an ideal not contained in a specified Frobenius power
- nu(..., Search => ...) -- computes the largest power of an ideal not contained in a specified Frobenius power
- nu(..., UseSpecialAlgorithms => ...) -- computes the largest power of an ideal not contained in a specified Frobenius power
- nu(..., Verbose => ...) -- computes the largest power of an ideal not contained in a specified Frobenius power
- nu(ZZ,Ideal) -- computes the largest power of an ideal not contained in a specified Frobenius power
- nu(ZZ,Ideal,Ideal) -- computes the largest power of an ideal not contained in a specified Frobenius power
- nu(ZZ,RingElement) -- computes the largest power of an ideal not contained in a specified Frobenius power
- nu(ZZ,RingElement,Ideal) -- computes the largest power of an ideal not contained in a specified Frobenius power
- ReturnList -- an option for the function nu to return a list of successive nu values
- Search -- an option for the function nu to specify the search method for testing containments of powers of ideals
- StandardPower -- a valid value for the option ContainmentTest
- UseSpecialAlgorithms -- an option for the functions fpt and nu to use special algorithms to speed up computations