NumericalSchubertCalculus : Index
- bracket2partition -- dictionary between different notations for Schubert conditions.
- bracket2partition(List,ZZ) -- dictionary between different notations for Schubert conditions.
- changeFlags -- Parameter homotopies to move solutions of a Schubert problem from one instance to another
- changeFlags(..., oneHomotopy => ...) -- Strategy for moving solutions to a Schubert problem from one instance to another.
- changeFlags(List,Sequence) -- Parameter homotopies to move solutions of a Schubert problem from one instance to another
- changeFlags(Matrix,List,Sequence) -- Recursive call of change flags
- checkIncidenceSolution -- Check if a solution satisfies the incidence conditions of a Schubert problem
- checkIncidenceSolution(Matrix,List) -- Check if a solution satisfies the incidence conditions of a Schubert problem
- findGaloisElement (missing documentation)
- higherWorkingPrecision -- option to raise the working precision to double double or quad double.
- isFullSymmetric (missing documentation)
- isGaloisFullSymmetric (missing documentation)
- LRcheater -- A cheater's homotopy to a real Schubert triple intersection problem
- LRcheater(ZZ,Matrix,String) -- A cheater's homotopy to a real Schubert triple intersection problem
- LRhomotopies -- interface to the Littlewood-Richardson homotopies in PHCpack
- LRrule -- uses the geometric Littlewood-Richardson rule to resolve a Schubert intersection problem.
- LRrule(ZZ,Matrix) -- uses the geometric Littlewood-Richardson rule to resolve a Schubert intersection problem.
- LRtriple -- runs the Littlewood-Richardson homotopy to solve a generic Schubert problem.
- LRtriple(..., higherWorkingPrecision => ...) -- option to raise the working precision to double double or quad double.
- LRtriple(..., luckySeed => ...) -- option to set the seed of the random number generators.
- LRtriple(ZZ,Matrix) -- runs the Littlewood-Richardson homotopy to solve a generic Schubert problem.
- luckySeed -- seed for the random number generators.
- NumericalSchubertCalculus -- Numerical Algorithms for Schubert Calculus
- oneHomotopy -- Strategy for changing flags.
- parseTriplet -- Parses a flag, system, and solutions (the output from LRtriple) into Macaulay2 objects.
- parseTriplet(String,String,String) -- Parses a flag, system, and solutions (the output from LRtriple) into Macaulay2 objects.
- partition2bracket -- dictionary between different notations for Schubert conditions.
- partition2bracket(List,ZZ,ZZ) -- dictionary between different notations for Schubert conditions.
- PieriHomotopies -- runs the Pieri homotopies to solve a general hypersurface problem
- PieriHomotopies(ZZ,ZZ) -- runs the Pieri homotopies to solve a general hypersurface problem
- PieriRootCount -- the number of solutions to a generic Pieri problem
- PieriRootCount(ZZ,ZZ,ZZ) -- the number of solutions to a generic Pieri problem
- printStatistics (missing documentation)
- randomSchubertProblemInstance -- Returns a random instance of a given Schubert problem by computing random matrices representing flags
- randomSchubertProblemInstance(..., Strategy => ...) -- Strategy for creating a random matrix representing a random flag
- randomSchubertProblemInstance(List,ZZ,ZZ) -- Returns a random instance of a given Schubert problem by computing random matrices representing flags
- setVerboseLevel -- Set different levels of information printed on screen
- solutionsToAffineCoords -- writes solutions in global coords to affine coordinates.
- solutionsToAffineCoords(List) -- writes solutions in global coords to affine coordinates.
- solveSchubertProblem -- uses Littlewood-Richardson homotopy to solve Schubert problems on Grassmannians
- solveSchubertProblem(..., LinearAlgebra => ...) -- switch between Linear Algebra and Parameter Homotopy
- solveSchubertProblem(List,ZZ,ZZ) -- uses Littlewood-Richardson homotopy to solve Schubert problems on Grassmannians
- solveSimpleSchubert -- uses Pieri homotopy algorithm to solve simple Schubert problems on Grassmannians
- solveSimpleSchubert(List,ZZ,ZZ) -- uses Pieri homotopy algorithm to solve simple Schubert problems on Grassmannians
- wrapTriplet -- Wraps a flag, system, and solutions into one string for phc -e.
- wrapTriplet(String,String,String) -- Wraps a flag, system, and solutions into one string for phc -e.