Description
i1 : R = QQ[a..d];
|
i2 : I = ideal(a^2, b^2-c*d);
o2 : Ideal of R
|
i3 : I^3
6 4 2 4 2 4 2 2 2 2 2 6 4 2 2 2
o3 = ideal (a , a b - a c*d, a b - 2a b c*d + a c d , b - 3b c*d + 3b c d
------------------------------------------------------------------------
3 3
- c d )
o3 : Ideal of R
|
The generators produced are often not minimal. Use
trim(Ideal) (missing documentation) or
mingens(Ideal) to find a smaller generating set.
i4 : trim I^3
6 4 2 2 2 3 3 2 4 2 2 2 2 2 4 2
o4 = ideal (b - 3b c*d + 3b c d - c d , a b - 2a b c*d + a c d , a b -
------------------------------------------------------------------------
4 6
a c*d, a )
o4 : Ideal of R
|