We compute the equation and nonminimal resolution F of the carpet of type (a,b) where a ≥b over a larger finite prime field, lift the complex to the integers, which is possible since the coefficients are small. Finally we study the nonminimal strands over ZZ by computing the Smith normal form. The resulting data allow us to compute the Betti tables for arbitrary primes.
i1 : a=5,b=5 o1 = (5, 5) o1 : Sequence |
i2 : h=carpetBettiTables(a,b) -- 0.00179621 seconds elapsed -- 0.00544047 seconds elapsed -- 0.0247805 seconds elapsed -- 0.00981086 seconds elapsed -- 0.00326663 seconds elapsed 0 1 2 3 4 5 6 7 8 9 o2 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1} 0: 1 . . . . . . . . . 1: . 36 160 315 288 . . . . . 2: . . . . . 288 315 160 36 . 3: . . . . . . . . . 1 0 1 2 3 4 5 6 7 8 9 2 => total: 1 36 167 370 476 476 370 167 36 1 0: 1 . . . . . . . . . 1: . 36 160 322 336 140 48 7 . . 2: . . 7 48 140 336 322 160 36 . 3: . . . . . . . . . 1 0 1 2 3 4 5 6 7 8 9 3 => total: 1 36 160 315 302 302 315 160 36 1 0: 1 . . . . . . . . . 1: . 36 160 315 288 14 . . . . 2: . . . . 14 288 315 160 36 . 3: . . . . . . . . . 1 o2 : HashTable |
i3 : T= carpetBettiTable(h,3) 0 1 2 3 4 5 6 7 8 9 o3 = total: 1 36 160 315 302 302 315 160 36 1 0: 1 . . . . . . . . . 1: . 36 160 315 288 14 . . . . 2: . . . . 14 288 315 160 36 . 3: . . . . . . . . . 1 o3 : BettiTally |
i4 : J=canonicalCarpet(a+b+1,b,Characteristic=>3); ZZ o4 : Ideal of --[x , x , x , x , x , x , y , y , y , y , y , y ] 3 0 1 2 3 4 5 0 1 2 3 4 5 |
i5 : elapsedTime T'=minimalBetti J -- 0.242927 seconds elapsed 0 1 2 3 4 5 6 7 8 9 o5 = total: 1 36 160 315 302 302 315 160 36 1 0: 1 . . . . . . . . . 1: . 36 160 315 288 14 . . . . 2: . . . . 14 288 315 160 36 . 3: . . . . . . . . . 1 o5 : BettiTally |
i6 : T-T' 0 1 2 3 4 5 6 7 8 9 o6 = total: . . . . . . . . . . 1: . . . . . . . . . . 2: . . . . . . . . . . 3: . . . . . . . . . . o6 : BettiTally |
i7 : elapsedTime h=carpetBettiTables(6,6); -- 0.00441317 seconds elapsed -- 0.0656268 seconds elapsed -- 0.173327 seconds elapsed -- 1.85836 seconds elapsed -- 0.509927 seconds elapsed -- 0.0432603 seconds elapsed -- 0.00636349 seconds elapsed -- 9.46162 seconds elapsed |
i8 : keys h o8 = {0, 2, 3, 5} o8 : List |
i9 : carpetBettiTable(h,7) 0 1 2 3 4 5 6 7 8 9 10 11 o9 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55 1 0: 1 . . . . . . . . . . . 1: . 55 320 891 1408 1155 . . . . . . 2: . . . . . . 1155 1408 891 320 55 . 3: . . . . . . . . . . . 1 o9 : BettiTally |
i10 : carpetBettiTable(h,5) 0 1 2 3 4 5 6 7 8 9 10 11 o10 = total: 1 55 320 891 1408 1275 1275 1408 891 320 55 1 0: 1 . . . . . . . . . . . 1: . 55 320 891 1408 1155 120 . . . . . 2: . . . . . 120 1155 1408 891 320 55 . 3: . . . . . . . . . . . 1 o10 : BettiTally |