We randomly choose an $r \times\ n$ matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.
i1 : setRandomSeed "nice example 2"; |
i2 : r=10,n=20 o2 = (10, 20) o2 : Sequence |
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) o3 = ({5, 2.91596e52, 9}, .00128716, .000713423) o3 : Sequence |
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) o4 = ({50, 2.30853e454, 98}, .00414227, .0289821) o4 : Sequence |
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) o5 = {{.00445241, .0100266}, {.00410818, .00344861}, {.00449458, .00589275}, ------------------------------------------------------------------------ {.00488974, .00843493}, {.00464055, .0110269}, {.0056853, .0104263}, ------------------------------------------------------------------------ {.00518494, .00676431}, {.0230155, .00722852}, {.00435713, .00469806}, ------------------------------------------------------------------------ {.00547657, .00683744}} o5 : List |
i6 : 1/10*sum(L,t->t_0) o6 = .00663048889999999 o6 : RR (of precision 53) |
i7 : 1/10*sum(L,t->t_1) o7 = .0074784479 o7 : RR (of precision 53) |
The object testTimeForLLLonSyzygies is a method function with options.