We compute nonminimal resolution F of the carpet of type (a,b) over a finite prime field, Lift this to a resolution over ZZ, introduce the fine grading, grep the various blocks of the crucial map in the a-th strand, compute their determinants and return their product.
i1 : a=4,b=4 o1 = (4, 4) o1 : Sequence |
i2 : d=carpetDet(a,b) -- 0.00658201 seconds elapsed -- 0.0101085 seconds elapsed -- 0.000156851 seconds elapsed -- 0.000123721 seconds elapsed -- 0.000116868 seconds elapsed -- 0.000114349 seconds elapsed -- 0.000112072 seconds elapsed -- 0.000119937 seconds elapsed -- 0.000145496 seconds elapsed -- 0.000145295 seconds elapsed -- 0.000122279 seconds elapsed -- 0.000123749 seconds elapsed -- 0.000112837 seconds elapsed -- 0.000114663 seconds elapsed -- 0.000107915 seconds elapsed -- 0.000106878 seconds elapsed -- 0.00011569 seconds elapsed -- 0.00009553 seconds elapsed -- 0.000106147 seconds elapsed -- 0.000106916 seconds elapsed -- 0.000113581 seconds elapsed -- 0.000107234 seconds elapsed -- 0.000144409 seconds elapsed -- 0.00012491 seconds elapsed -- 0.000116063 seconds elapsed -- 0.000117871 seconds elapsed -- 0.000125516 seconds elapsed -- 0.00010792 seconds elapsed (number Of blocks, 26) 1 1 1 1 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 1 1 1 1 o2 = 3131031158784 |
i3 : factor d 32 6 o3 = 2 3 o3 : Expression of class Product |
The object carpetDet is a method function.