We compute nonminimal resolution F of the carpet of type (a,b) over a finite prime field, Lift this to a resolution over ZZ, introduce the fine grading, grep the various blocks of the crucial map in the a-th strand, compute their determinants and return their product.
i1 : a=4,b=4 o1 = (4, 4) o1 : Sequence |
i2 : d=carpetDet(a,b) -- 0.00641353 seconds elapsed -- 0.0323369 seconds elapsed -- 0.000136595 seconds elapsed -- 0.000117897 seconds elapsed -- 0.000109613 seconds elapsed -- 0.000102806 seconds elapsed -- 0.000093294 seconds elapsed -- 0.000101942 seconds elapsed -- 0.000110785 seconds elapsed -- 0.00011827 seconds elapsed -- 0.00010846 seconds elapsed -- 0.000102935 seconds elapsed -- 0.000097044 seconds elapsed -- 0.000104454 seconds elapsed -- 0.000096962 seconds elapsed -- 0.000093769 seconds elapsed -- 0.000113073 seconds elapsed -- 0.000105858 seconds elapsed -- 0.000119048 seconds elapsed -- 0.000124772 seconds elapsed -- 0.000118907 seconds elapsed -- 0.000196818 seconds elapsed -- 0.0001131 seconds elapsed -- 0.000098499 seconds elapsed -- 0.000096586 seconds elapsed -- 0.000095433 seconds elapsed -- 0.000099932 seconds elapsed -- 0.000125899 seconds elapsed (number Of blocks, 26) 1 1 1 1 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 1 1 1 1 o2 = 3131031158784 |
i3 : factor d 32 6 o3 = 2 3 o3 : Expression of class Product |
The object carpetDet is a method function.